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In this review we have concentrated on the interpretation of three essential aspects of the thermal 
conductivity K of polymers: the temperature dependence, the crystallinity dependence and the 
orientation effect. K for all amorphous polymers is approximately equal in magnitude and charac- 
terized by a T 2 dependence below 0.5K, a plateau region between 5 and 15K and a slow increase at 
yet higher temperatures. While a number of models involving different phonon scattering mechanisms 
are capable of explaining these features, further corroborating evidence would be needed to explain 
the adhoc assumptions involved. For semicrystalline polymers K shows both strong crystallinity and 
temperature dependence, with a distinctive cross-over point at about 10K. These marked features can 
now be understood as the result of the interplay between two competing factors: the intrinsically 
higher conductivity in the crystalline regions, and the reduction in K due to an additional phonon 
scattering mechanism which becomes important at low temperature. This scattering could arise from 
either the correlation in the spatial fluctuation of the sound velocity in the polymer or the acoustic 
mismatch at the interfaces between the crystallites and the amorphous matrix. 

Orientation produces a very large anisotropy in semicrystalline polymers, which however decreases 
at low temperature and becomes insignificant below 10K. This feature can again be understood in 
terms of the same competing mechanisms if one realizes that the molecular chains in the crystallites 
are essentially lined up along the direction of orientation thus offering very little thermal resistance 
along this direction. For polyethylene with an extrusion ratio of 25 the thermal conductivity at 100K 
along the extrusion direction is 91 mW/cm K, a value extremely high for polymers and close to that of 
stainless steel. At this temperature the anisotropy is only about 20, yet because of the different tem- 
perature dependence of the thermal conductivity along and perpendicular to the extrusion direction, 
we predict an anisotropy as high as 60 at room temperature. 

INTRODUCTION 

There have been comparatively few studies of the thermal 
conductivity of polymers even though this property is of 
considerable scientific and technological interest. Most of 
these studies I are confined to the range around room tem- 
perature and this severely limits our understanding of the 
different mechanisms which contribute to heat conduction 
in polymers. Fortunately, this situation has somewhat im- 
proved in the past few years and data are now available for 
a number of polymers in the wider temperature range of 1 
to 350K 2-s. This review attempts to give an interpretation 
of the effect of temperature, crystallinity and orientation on 
the thermal conductivity of polymers and to indicate areas 
in which further investigations are needed for clarifying the 
situation. In this discussion we will include all the polymers 
for which data are available over a wide temperature range 
(1 to 350K). In addition, we will also consider most of the 
available low-temperature data (1 to 20K) since these have 
not received sufficient attention in previous reviews 1'9. 

Recent studies on a large number of amorphous solids 
have firmly established the fact that the thermal conduc- 
tivity (K) of all amorphous solids, whether organic or in- 
organic, has similar temperature dependence 2-~4. Below 
0.5K, K is approximately proportional to T2; as the tem- 
perature rises K increases more slowly until, between 5 and 
15K, it becomes independent of T (plateau region). At 
higher temperatures K again increases until, above 60K, it 
becomes proportional to the specific heat. Two approaches 
have been suggested to account for this universal tempera- 
ture dependence. The first approach ~s'16 assumes that the 

scattering of phonons is due to the spatial fluctuations in 
the elastic properties of the solid. In the recent formulation 
by Morgan and Smith 16 the T 2 dependence follows from 
the assumption of a long correlation length for these fluc- 
tuations of the order of 3000 A, while the plateau is explain- 
ed by the increasing importance, with rising temperature, of 
a short-range correlation of the order of 10 A. In the second 
approach ~7'~s resonant scattering by tunnelling states is as- 
sumed to be the dominant scattering mechanism for phonons 
at very low temperatures and this leads to the T 2 depen- 
dence. Furthermore, the plateau region can be explained 
by scattering by a different band of localized states at higher 
frequencies ~9. However, very little is known about the 
nature of these tunnelling or localized states except that 
there is some evidence of their existence in the data of 
specific heat and ultrasonic absorption. At the moment, 
both approaches seem to give an equally plausible explana- 
tion for the temperature dependence of amorphous mate- 
dais and they will be discussed in detail in the following 
sections. 

The temperature dependence of K of semicrystalline 
polymers is vastly different from that of the amorphous 
ones2-S, 20-24. The plateau region is absent and K normally 
exhibits a T 1 to T 3 dependence between 0.1 and 20K. At 
higher temperatures, K increases more slowly up to their 
respective glass transition temperatures, except for the highly 
crystalline polymers such as polyethylene (PE) and polyoxy- 
methylene (POM), for which K reaches a peak near 100K 
and then decreases slowly with temperature. K also depends 
strongly on the degree of crystallinity and this is exemplified 
by the case of poly(ethylene terephthalate) (PET) TM. While 
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K of PET at 30K and above increases with increasing crystal- 
linity, the values below about 10K show the opposite trend. 
At 1.5K, K of a 50% crystalline sample is one order of mag- 
nitude lower than that of the amorphous material. 

This unusual behaviour has been explained by considering 
a semicrystalline polymer as a composite consisting of crystal- 
line lamellae embedded in an amorphous matrix. Then the 
increase of K with crystallinity at high temperature can be 
understood as the reflection of the higher average conduc- 
tivity of the crystalline regions. However, the cross-over of 
the conductivity and the subsequent large decrease for the 
semicrystalline samples reveal an additional scattering 
mechanism which becomes important at low temperatures. 
This strong scattering process has been treated in two sepa- 
rate approaches which are valid in different temperature 
range (i.e. different phonon wavelength range). In the first 
treatment the presence of crystallites is assumed to introduce 
an additional correlation length (~- 100 A) for the fluctuation 
of the sound velocity and the increase in phonon scattering 
(with the accompanying decrease in conductivity) can be 
calculated either using the Klemens ls'24 or the Morgan-- 
Smith models 6'~6. It has been emphasized 16 that this approach 
works only when the phonon mean free path is larger than the 
correlation length, and this condition holds below about 5K. 
The second model 7 assumes that the difference in elastic 
properties between the amorphous and crystalline regions 
gives rise to a thermal boundary resistance R b at the inter- 
face. Direct measurements 2s-27 Of Rb for a number of solids 
show that it increases with decreasing temperature and be- 
comes proportional to T -n  (2 < n < 2.7) below 4K, which 
is in slight disagreement with Little's 2a theoretical prediction 
of T -3. Nevertheless, this rapid increase in R b can certainly 
account for the much smaller conductivity of the semicrys- 
talline samples 7. Although there is no simple criterion for 
the validity of this treatment it certainly will not be valid 
below 2K where the dominant phonon wavelength is larger 
than both the crystallite size and the distance between 
crystallites. 

The last topic to be covered in this article is the effect of 
orientation on the thermal conductivity of semicrystalline 
polymers. Contrary to the case for amorphous polymers 
where orientation effect above 100K has been investigated 
in some detail 1'29- 32, work on semicrystalline polymers has 
been reported only recently a'a3-36. On comparing these 
data, it is clear that semicrystalline polymers show a much 
larger anisotropy, but this effect diminishes with decreasing 
temperature and becomes insignificant below 10K. For in- 
stance, whereas at 100K a high density polyethylene sample 
extruded to 13 times its original length has a thermal con- 
ductivity in the extrusion direction (K0 equal to 10 times 
the value in the perpendicular direction (K3_), the correspon- 
ding ratio below 10K is only about 1.5 a4. 

These contrasting effects can also be explained by the 
composite model in the following manner. When a semi- 
crystalline polymer is oriented, the spherulitic structure is 
deformed and gradually broker~ up. Even at low extrusion 
ratios such as 4, the chain axes (c-axes) within the crystalline 
lamellae are mostly aligned along the extrusion direction. 
Since the covalent bonds along the chains are much stronger 
than the van der Waals bonds across the chains, the thermal 
resistance along the c-axis of a crystallite is negligible com- 
pared to that in the perpendicular direction. Thus the crys- 
talline regions in an oriented sample provide almost no resis- 
tance to heat flow along the extrusion direction, and so at 
high temperatures, Kll will be much larger than/(1. However, 
at low temperatures, the dominant resistive mechanism 
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(either arising from correlation in sound velocity fluctuation 
or boundary resistance) is not expected to be much affected 
by the orientation of the chains in the crystalline regions so 
the orientation effect is much smaller. We will see how these 
ideas can be applied to interpret the data of a few oriented 
semicrystalline polymers. 

AMORPHOUS POLYMERS 

General considerations 

In insulating solids heat conduction takes place by means 
of the lattice vibrations. Theoretical effort has been mainly 
confined to crystalline solids where the lattice vibrations can 
be resolved into normal modes which can then be quantized 
giving rise to the concept of phonons. These phonons are 
particles obeying Bose-Einstein statistics and the heat cur- 
rent is determined by the phonon distribution which can be 
obtained by solving the Boltzmann equation. The thermal 
conductivity is then given byaT: 

K(T) : 3 Ci(m)vi l i (w)dw 

i 

(1) 

where Ci(w)dw is the heat capacity contribution of phonons 
of polarization i and frequency 60, v i is the phonon velocity 
and li(co ) is the phonon mean free path. In the Debye ap- 
proximation where Ci(~o) is a known function and v i is inde- 
pendent of 60, K(T) is determined by l(~). Thus the whole 
problem reduces to the calculation of the phonon mean free 
path l(~o). 

Equation (1) can be considerably simplified by using the 
dominant phonon approximation. This follows from the 
fact that, at any temperature T, the phonons which contri- 
bute significantly to the integral in equation (I) have fre- 
quency o3 ~- 4kTfli. Thus the frequency dependence of 1 
can be converted to an equivalent temperature dependence 
and, after averaging over all polarizations, equation (1) 
becomes: 

1 
K(T)  = - C(T)vl(T)  (2) 

3 

where Cis the heat capacity per unit volume and v is the 
average phonon velocity. This is exactly the expression ob- 
tained if the kinetic theory of gases is applied to a system of 
phonons. At sufficiently low temperatures where C ~ T 3, a 
frequency dependence o f / ~  w - n  will result in K o: T3T-n  = 
T 3 - n. Therefore the temperature dependence of K will 
provide vital information on the dominant scattering mecha- 
nism at low temperatures. 

The temperature dependence of the thermal conductivity 
of crystalline solids (see a-quartz in Figure 1) can be under- 
stood qualitatively by means of equation (2). At high tem- 
peratures where most of the phonons are excited, the proba- 
bility of interaction among the phonons through the Umklapp 
processes 37 is proportional to the number of phonons, i.e. 
to the temperature. Thus I is proportional to T -1 and since 
C-~ constant it follows that K cx T-1. As the temperature is 
reduced fewer phonons are available for interaction and this 
leads to an exponential increase in both l and K. For crys- 
talline solids containing defects or impurities this exponential 
rise is usually not observed but the net effect is still a rapid 
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Figure 1 
amorphous selenium (Se) and poly(methyl methacrylate) (PMMA). 
The data for SiO 2 and Se after Zeller and Pohl (ref 14); data for 
PMMA from refs 3, 5, 11 and 12. A, e-quartz, U c-axis; B, vitreous 
silica; C, Se; D, PMMA 

d., i ,o ,60 
T(K)  

Thermal conductivity of crystalline and amorphous SiO2, 

increase in l until its value reaches the dimension of the 
sample. The phonons will then be scattered by the bounda- 
ries of the sample giving rise to a constant mean free path. 
Thus the thermal conductivity passes through a maximum 
and then becomes proportional to the specific heat, i.e. to 
T 3 at low temperatures. 

Figure l also shows the thermal conductivity of a few 
amorphous solids. It is seen that they display a thermal con- 
ductivity much lower in magnitude and vastly different in 
temperature dependence. K cx T 2 at low temperatures, passes 
through a plateau between 5 and 15K and then again increas- 
es with temperature. The first attempt at an interpretation 
of these features was made by Kittel a8 who used equation 
(2) to analyse the data for a few glasses above 40K. For 
vitreous silica it was shown that while l -~ constant -~ 7 A 
above 200K, it increases at lower temperatures reaching 15 )~ 
at 40K. If a glass is considered as a continuous random net- 
work, then at high temperatures where the wavelength of 
the dominant phonons is short, one would expect scattering 
at the boundaries of the unit cells thus leading to a constant 
mean free path of the order of the size of a unit cell. As the 
temperature is reduced the wavelength of the dominant 
phonons becomes much larger than the scale of the micro- 
scopic disorder (a few )~), so the amorphous medium be- 

comes essentially an elastic continuum and the details of the 
atomic structure is unimportant. In this region, the scatter- 
ing of phonons becomes weaker, and the phonon mean free 
path is longer than the wavelength of the dominant phonons 
which in turn is larger than the dimension of the microscopic 
disorder. Figure 2 shows that this condition is indeed satis- 
fied below about 100K and an amorphous solid can then be 
treated by means of the same theory as a crystalline solid ls'39. 
Even in the phonon picture two different approaches have 
been proposed and these will be discussed in turn. 

Phonon scattering by disordered structure 
Klemens 39 made the first attempt at an interpretation of 

the thermal conductivity of amorphous solids over a wide 
temperature range by assuming that the scattering of phonons 
is due to the elastic disorder of the amorphous structure and 
this is termed 'structure scattering'. A plausible argument 
was presented to show that at low frequencies the mean free 
path l for this process is proportional to w -2. Ziman 4° has 
refined this calculation by using techniques developed for 
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Average phonon mean free path I(T) after (2) for  amor- Figure 2 
phous SiO2, Se and PMMA. The values for SiO 2 and Se are taken 
from ref 14 while those for PMMA are calculated from the thermal 
conductivity in Figure I and the acoustic heat capacity obtained by 
Reese (ref 9) from the Tarasov model. A, SiO2; B, PMMA; C, Se 
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Figure 3 Thermal conductivity of amorphous polymers. The data 
for PMMA, poly(ethylene terephthalate) (PET), polycarbonate (PC), 
polystyrene (PS) and poly(vinyl acetate) (PVAc) are taken from refs 
2 to13 .  A, PMMA;B, PET;C, PC;D, PS;E, PVAc 

the treatment of the propagation of  radio waves through an 
irregularly refracting ionosphere. The mean free path is 
then given by: 

p 

/ --- Boo -2  for - - ,  >> 1 (3a) 
6oa  

P 
l = constant for , ~< 1 (3b) 

0 3 a  

where B is a constant characterizing the material, a' is the 
scale of the microscopic disorder and v/03 is the wavelength 
of the phonons. 

The result of  l = constant at high temperatures gives rise 
to K ,x C and thus K will increase slowly with temperature. 
This is consistent with the experimental data for all amor- 
phous solids and in particular, for amorphous polymers, as 
illustrated in Figures 3 and 4. Furthermore, l is found to be 
about 7 ,~ for all these polymers (Figure 2). However, the 
substitution of  equation (3a) into equation (2) gives K cc T 
at low temperatures, which disagrees with the observed T 2 
dependence. 

A modification to the above model has also been proposed 
by Klemens js who assumes that the amorphous structure 
gives rise to spatial fluctuations in the sound velocity which 
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in turn leads to the scattering of phonons. The sound velo- 
city can thus be written as v + s(-~), where v is the average 
sound velocity and s(x-') is the local fluctuation from the 
average. Then, using perturbation theory and ignoring the 
difference between longitudinal and transverse waves, the 
relaxation time r (= l/v) for the scattering of a phonon with 
wavevector q' into other states is given by: 

(2rO2M 2 ds' 1 v03 2 t 'q  J 
(4) 

where V is the volume of the solid, the integratiou is over 
the surface 03 = 03' in ~ '  space and t" is the unit vector in the 
direction of  the temperature gradient; c(q',~') can be expres- 
sed as: 

e(~,~') = - ~ -  q q' dEs(E)exp(i~.~') (5) 

where ~ = q" - ~ and the integration is over the volume of  
the solid. 

One can then introduce two quantities to describe the ran- 
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Figure 4 Thermal conductivity of amorphous polymers above 100K. 
Data for PET, poly(ethyl methacrylate) (PEMA), poly(n-butyl metha- 
crylate) (PBMA), atactic polypropylene (PP), natural rubber, 
poly(vinyl chloride) (PVC) and polyisobutylene (PIB) from refs 2 
and 41. Only data below the glass transitions are shown. Above the 
transitions the slopes of the curves change to negative. A, PET; 
B, PEMA; C, PBMA; D, PP; E, natural rubber; F, PVC; G, PIB 
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Figure 5 The relaxation times from the model of Morgan and 
Smith (ref 16). ~ = "rX 1012A 2 vL/aVn, VL = 2vTand Vn = 4 X 103 
m/sec, where Vl_ and v T are the longitudinal and transverse velocities 
of phonons. The straight line corresponds to the long wavelength 
form, for transverse modes, extrapolated to short wavelengths 

dora fluctuations in the velocity: the mean square fluctuation: 

dependence of ~b(p) and the strength of the scattering is also 
governed by the factor (s2). 

Since there is very little information on the form of the 
structure factor q)(p) for amorphous polymers we will not 
consider the application of equation (9) to these substances. 
However, in later sections on semicrystalline polymers, 
Klemens' theory will be used to describe the additional 
phonon scattering arising from the presence of crystallites. 

Following this idea that phonon scattering is caused by 
the spatial fluctuations in sound velocity, Morgan and 
Smith 16 have developed a microscopic model of elastic 
scattering. It is assumed that f ( 7 )  = exp(-r/a), where a is 
termed the correlation length, while another quantity A 2 is 
used as a measure of the magnitude of the velocity fluctua- 
tions. The relaxation times for the longitudinal and trans- 
verse waves have been evaluated, the results of which are re- 
produced in Figure 5. 

The calculation of the thermal conductivity is now 
straightforward. But since r ~ q -4 when qa "¢ 1 the calcu- 
lated thermal conductivity will become infinite unless 
another scattering mechanism is introduced to limit the 
mean free path of the low-frequency phonons. Assuming 
this mechanism to be boundary scattering, the thermal con- 
ductivity can be calculated by using a total mean free path 
1-1 = lb-1 + le -1, where 1 b denotes the size of the sample 
and le is the mean free path due to elastic scattering. The 
results are shown in Figure 6 (using parameters appropriate 
to amorphous Se) for different values ofa.  For large values 
of a (1000-3000 A)Kcx T n where 2 < n < 3 in the range 

1 fd [sG)] 2 <s2> = 

and the spatial correlation function: 

(6) 

, f  
f(7) = ~s2) d~s(~)s('~ + 7) (7) 

Id 

E 

i 0  -2 

If one defines the structure factor: 

~ )  = f dr'f(7) exp(iF'F) (8) 

and assumes that J '(7) and hence ¢(p-~) are spherically sym- 
metric, then:  

2q 

r - l ( q )  = 6 ( s 2 ) f  p 3~D(p)dp (9) 

0 

Thus the frequency dependence of r is determined by the p 

io-~l. / c 

tO-o'm I I0 IO 2 

T(K) 

Figure 6 The thermal conductivity as a function of temperature 
for different values of a. A 2 = 0.01, Ib = 10~2m and the other para- 
meters correspond to amorphous Se. Data from Morgan and Smith 
(ref 16). A , a = l S A ; B , a  = 1 0 0 # . ; C , a  = 3 0 0 0 A  
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0.1 to 1K. When a is reduced to 500-100 A K  becomes 
flat at very low temperatures until finally a plateau develops 
when a is sufficiently small (15-5  A). This suggests that 
the temperature dependence of K of amorphous solids may 
be explained in terms of long- and short-range correlations 
existing simultaneously. Figure 7 shows the fit to the data 
of Se obtained by Morgan and Smith, using the values 
AL 2 = 5 x 10 -4, a L = 3000 A, As2 = 4 x 10 -1, a s = 8 A,  
where the subscripts L and s denote the long-range and short- 
range correlations. We will not use this model to fit the data 
on amorphous polymers but merely note that, with approp- 
riate choice of the 4 parameters, reasonable agreement can 
certainly be obtained. 

The principal justification for this model lies in the fact 
that light scattering experiments do indicate long correlation 
lengths of about 3000 A in some amorphous materials 16. 
Whether long-range correlations exist in all amorphous solids 
is still an open question and in this respect, more light scat- 
tering and thermal conductivity measurements on the same 
samples will be useful. It should be noted that the Morgan- 
Smith model is also applicable to semicrystalline polymers if 
we introduce an additional correlation length of the size of 
the crystallites (= 100 A) and the detail of this treatment 
will be discussed later. 

Resonant  scattering o f  phonons  

A completely different kind of model, which assumes re- 
sonant scattering of phonons by tunnelling states, has been 
independently suggested by Anderson et al. 17 and Phillips la. 
According to this model, certain atoms or groups of atoms in 
an amorphous solid can occupy two different positions cor- 
responding to the minima of double-well potentials (Figure 8). 
A small asymmetry e in the depth of the potential wells 
exists because the surrounding of the particles in position 1 
is slightly different from that of position 2. Even though at 
low temperatures the particle does not have sufficient energy 
to surmount the barrier, yet it can move from one minimum 
to the other through phonon-assisted tunnelling. 

If we assume that the zero-point energy hw 0 of the motion 
of the particle around the minimum is the same in both posi- 
tions then the two lowest energy states of this asymmetric 
double-well is E = -+(e 2 + t~2) V~, where the coupling energy is 
ct = / ~ 0  exp(-/a) and/.t is roughly proportional to the dis- 
tance d between the two minima and to the square root of 
the barrier height V. The parameters e and ~t are assumed 

i0-1 
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i O - 2  

io-31 
iO-I 

i 1 

I Io 
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Figure 7 Theoretical f i t  to the data of amorphous Se. Data from 
Morgan and Smith (ref 16) 
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Figure 8 Asymmetric double-well potentials 

to be uniformly distributed in the range important at low 
temperature, leading to a probability distribution P(eda) = 
P, where P'is a constant. 

The interaction between this two-level system and the 
phonons arises from the deformation of the double-well 
potential by an elastic wave. When the phonon energy is 
near or equal to the energy difference of the two levels it 
will be absorbed and then incoherently re-emitted. The 
phonon mean free path is then given by l cx ~o-1 coth(~co/2kT), 
which is approximately co -1 at sufficiently low tem- 
perature. Therefore, using equation (2) K cx T3T -1 = 
T 2, which agrees with the observed temperature depen- 
dence. The tunnelling model of an amorphous material has 
received considerable support from its success in predicting 
the observed linear temperature dependence in the specific 
heat 12'14, the saturation properties of the ultrasonic absorp- 
tion 42'43, and the anomalies in the sound velocity 44 and ther- 
mal expansion 45. However, this model by itself gives no in- 
dication of the nature of the tunnelling states, nor the reason 
why the thermal properties of amorphous solids have such 
similar magnitude and temperature dependence. While 
spectroscopic methods are potentially powerful in the inves- 
tigation of these states, so far they have not been too success- 
ful l" , probably because of the broad distribution in the level 
spacings. 

At slightly higher frequencies, in the range of 0 (---h~/k) 
between 5 and 20K, another resonant scattering mechanism 
has been proposed 19. This is based on the observation that 
the measured specific heat la'46-s° is in excess of the acoustic 
value deduced from sound velocities, suggesting the existence 
of another band of localized vibrational modes. The particles 
contributing to these modes are assumed sl to be situated in 
or near cavities, thus only weakly coupled to the lattice. 
They will then vibrate almost independently and hence 
strongly absorb phonons having the right frequency. 

Combining these ideas, we can thus divide the frequency 
spectrum into three regions. 

(a) t.o~<¢o R, l = D ~  -1  * 

* If the expression I ¢~ ~-1 coth(hw/2kT) is used, then the satura- 
tion of the two-level system at high temperatures would lead to un- 
realistically long phonon mean free path for the low-frequency 
phonons, and other scattering mechanisms would have to be inclu- 
ded s2. Because of the primative state of the model we will not 
consider this refinement. 
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Figure 9 Theoretical f it to the data of PMMA according to equa- 
tions (10) and (11 ). The points are data from Figure 1 

where 6oR is the lower limit of the band of localized vibra- 
tions. Substituting this/(co) into equation (1) the contribu- 
tion of the phonons in this frequency region is: 

OR/T 
k3D f x3eX 

K 1 - - -  T 2 - -  dx (10) 
2n2~2v 2 (e x - 1) 2 

0 

where tl is Planck's constant, k is Boltzmann's constant, 
O R = l~6oR/k and x = ti6o/kT. Here the Debye spectrum is 
used, i.e. the density of acoustical modes is proportional to 
6o 2 and the integral includes contributions of both transverse 
and longitudinal waves. 

(b) 6oR < 6o <<. 6o c 

where 6oc is the upper limit of the band of localized vibra- 
tions. This is the region where the mean free path is expect- 
ed to be small (of the order of interatomic distances) because 
of strong phonon scattering by the band of localized vibra- 
tions. 

(c) 6oC< ~ -< 6o 1 

where 6ol is the maximum frequency of the acoustic phonon 
spectrum. In this region of high frequencies we know from 

both Ziman's theory 4° and the experimental data that l -~ 
constant -~ a few A. In order to reduce the number of para- 
meters we equate the mean free paths in regions b and c and 
so the total contribution from these two regions is: 

Ol/T 
1 x2e x 

r2 = f g(6o) (ex_ 112 
on/r 

dx (11) 

where g(6o) is proportional to the density of states of the 
acoustic modes and 01 = h6ol/k. We note that both equa- 
tions (10) and (11) derive from equation (1), but as a result 
of the difference in frequency dependence of l(6o) and g(6o) 
in the two cases the forms of the integrals are not the same. 

For solids with linear chain structure such as the polymers 
we are considering, it has been shown s3,s4 that g(6o) follows 
a 602 distribution from 0 to a frequency characterized by 0 3 
and then becomes constant from 0 3 to the maximum fre- 
quency 01. The values of 03 and 01 for poly(methyl metha- 
crylate) (PMMA) have been obtained by Reese 9 so we can 
apply equations (10) and (11) to analyse the thermal con- 
ductivity of this polymer. The results are shown in Figure 9 
and it is clear that there is reasonable agreement throughout 
the whole temperature range of 0.1 to 350K. The values of 
the parameters used are D = 1.35 x 108 cm/sec, O R = 4.7K 
and vl = 1.31 x 10 -2 cm2/sec. Using v = 1.79 x 105 cm/sec 
from the sound velocity measurements 49 l is found to be 
7.2 h.  

In the model we are using, the parameter D is considered 
to be a constant characterizing the material and O R is to be 
identified with the lower frequency limit of the band of 
localized vibrations. The value of OR is consistent with the 
result of specific heat measurements which show that the 
excess contribution can be explained by the existence of 
non-acoustic modes at frequencies corresponding to 4.9K 
(Oa) and 17.5K (Oh), respectively 49. The value of 7.2 A for l 
is also quite reasonable since the distance between vibrating 
units on neighbouring chains estimated from the density is 
7.5 flk 9'10. 

We have applied the same analysis to the low-temperature 
data of other amorphous polymers and the resulting values 
of D and OR are given in Table 1, together with O's obtained 
from specific heat measurements. It should be noted that 
the values of D and O R do not vary considerably from one 
polymer to another, the reason being that, at any tempera- 
ture, the values of the thermal conductivity of all amorphous 
polymers lie within a factor of two (see Figures 3 and 4). 
Furthermore, if we consider only the range above 15K, then 
the thermal conductivity at any temperature is within 15% 
of the average value. We will see that this important result 
is very useful when discussing the thermal conductivity of 
semicrystalline polymers in the next section. 

In conclusion, while existing models are able to explain 

Table I Parameters D and O R obtained from the analysis of the 
low-temperature thermal conductivity of amorphous polymers. 
Please refer to the text for explanation of symbols 

Dxl 0 -7 
Polymer (cm/sec) 0R(K) 0a(K) 0b(K) 

Poly(methyl methacrylate) 13.5 4.7 4.9 17.5 
Polystyrene 6.02 5.2 5.5 16 
Polycarbonate 5.61 4.5 5.0 14 
Poly (ethylene terephthalate) 5.43 4.3 -- 15 
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Thermal conduct iv i ty of semierystalline polymers. Data 
for  polyethylene (PE1, X = 0.81; PE2, X = 0,71; PE4, X = 0.43), 
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interpolat ion between existing data. A, PE1 ; B, POM; C, PE2; 
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the unusual temperature dependence of the thermal conduc- 
tivity of amorphous solids further justification of these can- 
not be obtained from conductivity measurements alone. It 
is hoped that, with the combination of several techniques 
such as low-angle X-ray measurements, light scattering and 
spectroscopic methods, more information about these solids 
will be forthcoming in order to help us narrow down on a 
particular model. 

SEMICRYSTALLINE POLYMERS 

The thermal conductivity of semicrystalline polymers exhibits 
a temperature dependence vastly different from that of the 
amorphous ones and this typical behaviour is illustrated in 
Figure 10. No plateau region is observed and the thermal 
conductivity displays a T 1 and T 3 dependence below 20K. 
For the highly crystalline (volume fraction crystallinity 
X/> 0.7) polymers such as POM and high density PE the 
thermal conductivity first increases with increasing tempera- 
ture, reaches a peak near 100K and then decreases, while for 
polymers of comparatively tow crystallinity such as low 
density PE, PET and polypropylene (PP) the thermal con- 
ductivity increases monotonically up to their respective glass 
transition temperatures. 

It is also seen from Figure 10 that at high temperatures 
the thermal conductivity of PE increases significantly with 
crystallinity but this effect diminishes near 2K. An even 
better illustration is provided by the data on PET (Figure 11) 
which clearly demonstrate two opposite trends: K increasing 
with X at high temperature but decreasing with increasing X 
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below 10K. At 1.5K the conductivity of a 50% crystalline 
sample is more than ten times lower than that of the amor- 
phous one. Since the conductivity of the crystallites is ex- 
pected to increase with decreasing temperature such unusual 
behaviour can only arise from an additional phonon scatter- 
ing mechanism which becomes important at low temperatures. 

Before going into any further discussion it is worthwhile 
to describe briefly the morphology of semicrystalline poly- 
mers ss. Such a material consists of crystalline units called 
lamellae embedded in an amorphous matrix. The lamellae, 
with lateral dimensions of the order of 1 ~tm and thickness 
of the order of 100 A, are made up of chains folded back 
and forth between the lamella surfaces. In an isotropic, 
melt-crystallized sample the lamellae are randomly oriented 
and will arrange themselves end-to-end to form ribbon-like 
structures which grow out from nucleating centres to form 
larger structures called spherulites. There is also considerable 
evidence s6-s9 that the lamellae are in turn composed of 
mosaic crystalline blocks of lateral dimensions 100-300 A, 
with boundaries defined by dislocations. While the inter- 
lamellar amorphous regions and the intermosaic block regions 
have been termed the amorphous state of the first and second 
kind, respectively 6°, they will be considered identical as a 
first approximation, so a semicrystalline polymer can be 
treated as a two-phase material with roughly spherical 
crystallites. 

With this physical picture in mind we can continue our 
discussion which, for convenience, will be divided into two 
parts dealing consecutively with the behaviour above and 
below 30K. 

High temperature behaviour 
We first consider the region above 30K where the domi- 

nant phonon wavelength is much smaller than both the 

i 

I0 I00 
T(K} 

Figure 11 Thermal conduct iv i ty of PET. Data f rom ref 7. A,  X = 
0; B, X = 0.09; C, X = 0.17; D, X = 0.25; E, X = 0.29; F, X = 0.39; 
G, X = 0.51 
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crystallite size and the intercrystallite distance, and the 
boundary resistance is negligible. Here the conductivity of 
a semicrystalline polymer is expected to depend only on the 
conductivity of the amorphous and crystalline regions, 
respectively, the crystallinity X and the shape of the crys- 
tallites. It is therefore not too surprising that early analyses 
by Eiermann 4 and Sheldon and Lane 6t of the crystallinity 
dependence on the basis of the Maxwell model seem quite 
successful since this model considered isotropic spherical 
inclusions randomly distributed in a matrix and treated the 
mutual interaction among them in an average manner. How- 
ever, the model is not strictly valid for polymers since the 
large difference between the intrachain covalent bonding 
and the interchain van der Waals interaction is expected to 
give rise to large anisotropy in the intrinsic thermal conduc- 
tivity of the crystallites. In fact, theoretical estimate 6 shows 
that the conductivity along the chain direction of a crystallite 
(Kcll) is more than 50 times larger than that of the amorphous 
region (Ka) which is in turn comparable to the conductivity 
perpendicular to the chain direction (Kc±). This is also experi- 
mentally confirmed as we shall see in later sections where 
oriented polymers are considered. 

The Maxwell model has recently been generalized to the 
case where the inclusions are thermally anisotropic and this 
provides not only a more realistic description of the crystal- 
linity dependence but also an explanation for the orientation 
effect 62. For the moment let us concentrate on isotropic 
polymer the conductivity of which is given by the model as62: 

K - K a 

K + 2Ka 

[ 2  k±-  1 1 k u - l ]  

- -  - X  k±+2 +3 ~1+2] 
(12) 

where k± = KcaJKa and kll = K j K  a. Equation (12) will of 
course reduce to the Maxwell expression when the crystallites 
are isotropic, i.e. k± = ku. For polymers, however, k n >> 1 and 
equation (12) becomes: 

K -  K a ~_ X - - - +  (13) 
K + 2K a 3 k l + 2 

It is seen from equation (13) that K is almost 
independent of Kctl. Moreover, if amorphous samples 
are available (as in the cases of PET and PP) K a can also be 
directly measured. In any case, Ka for all amorphous poly- 
mers above 30K are so similar (see Figures 3 and 4) that it 
can be easily estimated to within 15%. Therefore the only 
remaining parameter in equation (13) is Kc± which can be 
obtained by the fitting of data. Figure 12 gives an example 
of such fits for PE at two different temperatures and the re- 
sults are quite satisf/~ctory. The resulting Kc± values for four 
polymers, shown as functions of temperature in Figure 13, 
fall into two distinct groups with the values for PE and POM 
decreasing with rising temperature while those for PET and 
PP being approximately temperature-independent within 
the accuracy of the analysis. Furthermore, Kc± of PE follows 
approximately a T -1 dependence, which is characteristic of 
three-phonon Umklapp scattering processes 37'4°. Its magni- 
tude throughout the whole temperature range is about the 
same as the thermal conductivity of molecular crystals such 
as benzene (C6H6) 63 which probably possesses van der 
Waals interaction of similar strength. The much lower Kcl 
values for PET and PP are partly the result of weaker inter- 
chain van der Waals interactions but the only possible ex- 
planation for the gentle temperature dependence seems to 
be phonon scattering by defects in the crystallites. This is 

understandable because the repeating units of these two 
polymers are more complicated and bulky. 

Now it is easy to understand the temperature dependence 
of K above 30K as displayed in Figure I0. For polymers 
with simple structure such as PE and POM Kc± >> Ka near 30K, 
so equation (13) further reduces to K = Ka(1 + 2X)/(1 - X), 
i.e. K is proportional to Ka and thus increases with rising 
temperature. However, above 100K where Kc± and Ka be- 
come comparable, K will depend on both these quantities. 
At high crystallinity (X ~> 0.7) its temperature dependence 
is dominated by that of Kc±, so it will decrease with increas- 
ing temperature. Therefore, starting from 30K, K first in- 
creases, reaches a maximum near 80K and then decreases 
with temperature. On the other hand, the temperature de- 
pendence of K of low-crystallinity (X ~< 0.4) samples.is in- 
fluenced more by Ka so it will increase with temperature up 
to about 200K where it exhibits a very shallow maximum 
(Figure 14). For polymers with more complicated structure 
(e.g. PET and PP) Kc± is nearly temperature-independent so 
K has similar temperature dependence as K a. 

Since Kc± is expected to either increase or remain con- 
stant as the temperature decreases equation (13) predicts an 
increase of K with crystallinity even at low temperatures, in 
contradiction to the observed behaviour below about 10K. 
Two models have been proposed to account for this unusual 
behaviour and we will discuss them in the following sections. 

Low temperature behaviour 
Correlation in sound velocity fluctuation. The first ap- 

proach to this problem assumes that the presence of crystal- 
lites introduces a correlation length for the sound velocity 
fluctuation of the order of the size of the crystallites (100 h). 
This leads to additional phonon scattering and the accom- 
panying decrease in conductivity. Morgan and Smith 16 have 
emphasized that this treatment is strictly valid only when the 
mean free path is larger than the correlation length, so taking 
amorphous PET as an example and using equation (2), the 
range of validity is found to be below 5K. Because of its 
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Figure 12 The crystallinitv dependence of the thermal conductivity 
of isotropic PE at 100 and 300K. 30OK: e, data (from ref 4); - - -  
theoretical. 100K: A, data (from ref 4); - -- --, theoretical. The 
theoretical curves are calculated according to equation (13) 
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The temperature dependence of the thermal conductivity 
of the crystallites normal to the chain axis for PE, POM, PET and PP. 
For comparison we also show Ka, which is the thermal conductivity 
of amorphous PE obtained by extrapolation of the data for the 
melt 1. Its value is typical of all amorphous polymers. A, PE; 
B, POM; C, Ka; D, PET; E, PP 

lower conductivity the mean free path in a semicrystalline 
sample is shorter and this pushes the limit to even lower 
temperatures. 

Based on this idea of  an additional correlation length two 
different attempts have been made to interpret the data for 
semicrystalline polymers. Assfalg 24 has applied Klemens' 
theory is to analyse the conductivity of  PET in the following 
manner. First, it is assumed that the structure factor for 
velocity fluctuation ~bO-') given in equation (8) is propor- 
tional to the structure factor for electron density fluctuation 
q~e(ff), which can be obtained from low-angle X-ray diffrac- 
tion measurements. The maximum in q~e(ff) corresponds to 
Bragg reflection by the periodic density variations arising 
from the stacking of amorphous and crystalline regions with 
an average period (the long period) which can be roughly 
identified with the correlation length. In an isotropic poly- 
mer the crystalline lamellae are randomly oriented so q~e(ff) 
has spherical symmetry.  Now if we use the dominant phonon 
approximation, that is, at any temperature T the phonons 
which contribute most to the thermal conductivity have 
wavevector qd ~ 4kT/~v. then the relaxation time in equa- 
tion (9) becomes 7-(7") ~- 7-(qd) ~ [q~(qd)] - 1. Since q~(q) cc (Je(q) 
and l = vT, the thermal conductivity of a semicrystalline 
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sample can be obtained from equation (2): 

[~)e(qd)] a 
Ks(T ) - - -  Ka(T ) (14) 

[ #Pe(qd ) ] s 

where the subscripts a and s refer to the amorphous and 
semicrystalline samples, respectively. Therefore, with 
(~e(q) already determined from low-angle X-ray data, 
Ks(T ) can be calculated in terms of Ka(T) and the results 
are shown in Figure 15. It is clear that the main features of  
the experimental curves, namely, the large decrease o f K  s 
with increasing X, can be reproduced by this model in spite 
of the crude approximations. 

Similar arguments have been employed by Burgess and 
Greig 6 to explain the data above 2K of both isotropic and 
extruded PE. It is again assumed that phonons are scattered 
as they pass through regions of  varying sound velocity, i.e. 
lamellae and amorphous regions, but the Morgan-Smith  
model 16 is used to obtain a quantitative fit. For heat con- 
duction along the extruded direction the total mean free 
path can be written as: 

/ - l ( q )  = lb- i  + lL- l (q)  + (1 -- X ) l s - l ( q )  (15) 

where IL(q) and Is(q) denote the mean free paths for long- 
range and short-range correlations, respectively, which can 
be obtained from the universal curves in Figure 5. The values 
ofaL and as used are 100 and 8 A, respectively, and the con- 
stant lb, which is the boundary dimension, is taken to be 
1 cm. The l L -  1 term accounts for the scattering of phonons 
arising from velocity fluctuation in alternate regions of  amor- 
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Figure 14 Theoretical thermal conductivity of PE between 30 and 
300K at crystallinities X = 0.4 and 0.7. Kc_ L below 100K is obtained 
by extrapolating the roughly 1 / T  curve in Figure 1 3 t o  a lower tem- 
perature. K a is assumed to follow the typical behaviour of amorphous 
polymers. The theoretical curves at X = 0.4 and 0.7 are calculated 
according to equation (13). A, Kc±; B, X = 0.7; C, X = 0.4; D, K a 
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Figure 15 Thermal conductivity of PET between 1 and 10K. 
- - ,  experimental data; . . . .  , calculated according to equation 
(14) (from ref 24). A, X = 0; B, X = 0.05; C, X = 0.14; D, X = 0.75 

of the amorphous region. Since the lamella thickness (and 
hence aL) is roughly the same for isotropic and extruded PE 
equation (15) predicts similar thermal conductivity for these 
two samples, in agreement with the experimental data 
(Figure 16). At higher temperature, however, the thermal 
resistance of the crystallites becomes larger and has to be 
taken into account. If it is assumed 6 that the amorphous 
and crystalline regions form a series arrangement in which 
the crystallites lie with the c-axes all perpendicular to the 
direction in which K is measured, then equation (15) must 
be modified to: 

l - l (q)  = Ib -1 + lL-l(q) + (1 - X)ls-l(q) + Xlu- l (q )  (16) 

where lu(q) is the mean free path arising from Umklapp scat- 
tering of phonons in the crystallites perpendicular to the c- 
axis. Although satisfactory fit 6 to the high temperature data 
can be obtained by employing an appropriate expression for 
/u(q) the above assumption on the arrangement of crystal- 
lites is not very realistic, and the treatment given in the earlier 
section on 'High temperature behaviour' seems more 
appropriate. 

Thermal boundary resistance at amorphous-crystalline 
interfaces. A different model 7 which can also account for 
the reduction of K with increasing crystallinity assumes that 
this reduction is caused by the acoustic mismatch between 
the crystallites and the amorphous matrix which introduces 
an additional resistance. This thermal boundary resistance 
R b depends on the sound velocities and densities of the 
amorphous and crystalline regions, respectively, and will be 

E 
(J 

E 

phous and crystalline phases, while the term (1 - X)ls -1 is 
considered to be adequate for describing phonon scattering 
in the amorphous regions since the effect of the very long 
correlation length (3000 A) inherent in amorphous materials 
is not too important above 2K. Phonon scattering in the 
crystalline regions is negligible since the chains are already 
aligned in the extruded direction. 

We have formerly mentioned that the model is not valid 
when the mean free path is smaller than the long correlation 
length aL, so the term lL - I  is meaningless for the majority 
of phonons at high temperatures (near 100K). However, 
Burgess and Greig 6 have estimated that the effect of neglect- 
ing l L (i.e. setting IL-1 = 0) for all phonons at 100K intro- 
duces only a 30% difference to the calculated value of K, so 
the use of equation (15) for the analysis of data in the tem- 
perature range of 2 to 100K seems justified. 

A good fit to the~data is obtained with AL2 = 0.08 and 
As 2 = 0.25 and this is shown in Figure 16. Although these 
parameters are arbitrary it is interesting to note that As2 is 
of the same magnitude as those used by Morgan and Smith 
for amorphous materials (e.g. Se), which is reasonable since 
short-range correlation exists only in the amorphous regions 
of PE. On the other hand, A L 2 is somewhat larger than the 
corresponding value for amorphous materials, reflecting the 
large difference in elastic properties between amorphous and 
crystalline PE. 

Equation (15) can also be applied to the data of isotropic 
PE below 30K where the thermal resistance of the crystallites 
normal to the chain axis is also negligible compared to that 
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Figure 16 Thermal conduct iv i ty  of PE (Hostalen GUR, X -~ 0.6). 
t, K//data (X. = 4.4); - - . ,  theoretical (equation 15); I ,  K±data 
(h = 4.4); A, isotropic data; . . . . . . . .  , theoretical (equation 16) 
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larger if there is greater disparity in these quantities in the 
two phases. 

This approach receives strong support from the fact that 
similar behaviour 26'27'64 of the thermal conductivity of com- 
posites made from epoxy (an amorphous polymer) with 
various powder fillers (copper, quartz, corundum etc.) has 
been successfully explained on the basis of a two-phase 
model 6s which incorporates thermal boundary resistance. 
This model takes into account all the relevant factors: the 
thermal conductivities of the filler and the matrix, the shape, 
size and concentration of the filler, and the boundary resis- 
tance Rb, which are all measurable quantities in the case of 
composite materials. Unfortunately, it is valid only for dilute 
concentration of filler (<25%) and though applicable to 
PET 62, is not useful for other semicrystalline polymers which 
usually have higher crystallinity. Therefore we have to find 
another model which holds for a wider range of crystallinity. 

In our previous analysis of the high-temperature data the 
roughly spherical mosaic blocks have been taken as the crys- 
talline inclusions. Now if we consider the limiting case of 
infinite boundary resistance, which is equivalent to setting 
both k± and k~ to zero, then equation (12) gives K = 
2Ka(1 - X)/(2 + X), i.e. K = 0.4 Ka at X = 0.5. Since the 
data for PET at the lowest temperature are much smaller 
than this value we have to conclude that the low-temperature 
data are not consistent with spherical crystallites. However, 
bearing in mind that the effect of boundary resistance is to 
impede heat flow from the interlamellar amorphous region 
to both the mosaic and intermosaic regions, it is clear that 
the basic unit for blocking heat flow must consist of a num- 
ber of mosaic blocks and thus has a plate-like shape. 

A crude description of this physical situation is given by 
the arrangement in Figure 17. That is, for each cross- 
sectional area A perpendicular to the direction of heat flow, 
a fractional area fA is completely occupied by amorphous 
material. In the remaining area, (1 - f ) A ,  amorphous and 
crystalline regions are stacked in alternate layers. The thick- 
ness d of the crystalline regions represents the effective 
thickness of the lamellae along the direction of heat flow. 
Since the lamellae are on average inclined at an angle, say 
45 °, to the direction of heat flow, d is taken to be (2) '/2 
times the average lamella thickness of the sample. Assuming 
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linear heat flow through this parallel arrangement of amor- 
phous region and amorphous-crystalline stacks, it is easily 
shown that: 

K (1 _ f )2  
- -  = + f  ( 1 7 )  
K a 2XKa(Rb/d ) + (1 - f -  X) 

where the thermal resistance of the crystalline region has 
been neglected. 

Since the average thickness of the lamellae can be ob- 
tained from low-angle X-ray diffraction measurements and 
other methods the application of equation (17) to the analy- 
sis of the data of a particular sample requires in general three 
parameters,f, Rb(T ) and Ka(T), where the last two also de- 
pend on temperature. For the series of samples of PET 
(Figure 11) for which Ka(T ) has also been measured, we are 
left with only two parameters f and Rb(T). Since Rb(T) 
cannot be directly measured it has to be estimated from 
Little's theory 28 which, at sufficiently low temperature, 
gives R b = R T  -3 where R depends on the sound velocities 
and densities of the amorphous and crystalline phases. 
Although it has been found experimentally 2s-2~ that R b o: 
T -n (2 < n < 2.7) between 2 and 5K for a number of materials 
the theoretical and observed values are normally within a 
factor of 4 near 3K. Thus Little's expression should be suf- 
ficient for indicating whether the present mechanism can 
possibly account for the observed thermal conductivity. 

With the help of equation (17)we can understand quali- 
tatively the unusual features in Figure 1 l. Since crystalline 
material has a higher average conductivity than amorphous, 
so at high temperatures where the boundary resistance is 
negligible, the net conductivity of a polymer always increases 
with crystallinity. As the temperature decreases R b increases, 
so that at some temperature (15-20K in the case of PET), 
the contribution from R b more than compensates for any 
increase in conductivity due to the presence of crystalline 
regions, thus leading to the cross-over in the thermal conduc- 
tivity curves. This trend increases until finally, at 1.5K, the 
conductivity of the 50% crystalline sample is more than ten 
times less than K a. The increase in slope of the curves with 
crystallinity can also be understood as the consequence of 
combining the resistances due to the amorphous phase and 
the amorphous-crystalline interfaces. Since experimentally, 
K ~ T 0"5 for the amorphous material between 2 and 10K 
one would expect K ~ T'r (where 0.5 < 7 < 3) for the semi -  
c rys ta l l ine  samples. As the crystallinity increases, there will 
be more interfaces available for scattering of phonons, so 
the contribution o f R  b (~ T -3) becomes more important. 
Quantitative fit of the data to equation (I 7)has also been 
obtained 7 and the results show that f~-  0.1 for X > 0.3, in- 
dicating that even at such low X most of the area perpendi- 
cular to heat flow is already blocked by the plate-like crys- 
talline units. 

We note that PET is particularly suitable for the above 
analysis because its crystallinity can be changed over a wide 
range (0.6 to 0 i.e. including the amorphous state) through- 
out which relevant data are available. The extension of this 
method to other polymers is much more difficult, mainly 
because bulk samples of most . semicrystalline polymers can- 
not be transformed into a state of sufficiently low crystal- 
linity (say 0.1) even by fast quenching from the melt. For 
an example, let us consider PE, which has a reasonably wide 
crystallinity range and Kolouch and Brown 19 have m e a s u r e d  
the thermal conductivity of 4 samples (X from 0.43 to 0.81) 
between 1.2 and 20K (Figure 18). The fitting of these data 
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Figure 18 Theoretical fit to the low-temperature data of PE. 
- - ,  calculated according to equation (17); . . . .  , K a ( T )  
resulting from data fitting. The points are the smoothed data from 
ref. 22 and the crystallinities of PE1 to PE4 are 0.81,0.71,  0.56 and 
0.43, respectively. A, PE1 ; B, PE2; C, PE3; D, PE4 

will require more parameters than for the case of PET. To 
simplify this problem we adopt the following procedure. 
First, we consider only the data above 3K, where the fit is 
expected to be relatively insensitive to small variation in f, 
so that, following the example of PET, it could be taken as 
0.1 for all samples. Secondly, the relation Rb = RT -3 is 
assumed to hold for the whole temperature range. Because E 
PE has a high Debye temperature ~ this assumption is cer- 
tainly justified up to 10K, whereas above this temperature, ~ IO-~ 

E 
Rb has dropped to such low values that a slight error in the 
temperature dependence should have little effect on the re- 
suit. Finally, Ka(T) for PE is assumed to have the charac- 
teristic temperature dependence of amorphous solids, that is, 
it is temperature-independent between 4 and 10K, while out- 
side this range, it is ~i slowly varying function of temperature. 
The lamella thickness of the PE samples has also been ob- 
tained by Kolouch and Brown from low-angle X-ray measure- 
ments so the values o f d  are known. From the theoretical 
curves shown in Figure 18, we see that the results are quite 
satisfactory since the agreement with data is within 10% for 
all four samples and the Ka(T) obtained from data fitting 
has similar values as other amorphous polymers. 

Data for other polymers are usually available only for a 
single sample. Figure 19 shows that the curves fall into two IC)2 
main groups, with the highly crystalline samples (PE 1 and 
POM) having much higher thermal conductivity and a larger 
slope. It is somewhat surprising to see that the thermal con- 
ductivities of four different polymers (PE4, PP, nylon-6,6, 

PET) of similar crystallinity (X = 0.4 to 0.6) and within 30% 
of one other. This implies that the value Of Rb/d is roughly 
the same and since for all these polymers of low crystallinity 
the lamella thickness is about 100 A,R  b also should not vary 
to any extent. This point is further illustrated by fitting the 
data at 4K to equation (17), taking f =  0.1 and K a = 
0.38 mW/cm K (average of the values for several amorphous 
polymers). The values of the parameters d and R (= Rb T3) 
are given in Table 2. It is now clear that the unusually large 
thermal conductivity of polychlorotrifluoroethylene 
(PCTFE) is the consequence of having larger lamella thick- 
ness, and the smaller slope of the curve reveals that it has a 
low crystallinity (X = 0.34). The crystallinity of the 
polytetrafluoroethylene (PTFE) sample is not known but 
the high thermal conductivity probably results from both 
high crystallinity and large lamella thickness. We also 
note the absence of a plateau on the curve for poly(vinyl 
chloride) (PVC) even though this polymer is usually consi- 
dered amorphous. Actually, PVC has been found a'66 to con- 
tain a small percentage of crystalline regions and we see that 
the magnitude and temperature dependence of K of this 
polymer is similar to those of PET of crystallinity of about 
0.1 (compare with Figure 11). Thus the low-temperature 
behaviour of all semicrystalline polymers is consistent with 
the series/parallel model with boundary resistance. 

Therefore we conclude that while the modified Maxwell 
model can satisfactorily account for the behaviour of K 

Figure 19 

E l  

T(K) 

Thermal conductivity of semicrystalline polymers below 
10K. Data from refs 7, 8, 21 and 22. A, PE1; B, POM; C PE4; 
D, PCTFE; E, PVC; F0 PTFE; G, PP; H, nylon-66; I, PET 
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Table 2 Parameters obtained from the analysis of the low-temperature thermal conductivity of semicrystalline polymers, d = (2) 1/2 X average 
lamella thickness. For the samples of PE1 and nylon-66 the lamella thickness given are the measured values 22 while the rest are just typical values 
obtained from literature ss. Refer to the text for explanation of other symbols 

R/d X 10 -2 R X 104 
Polymer X K a (mW/cm K) d(A) [(mW) -1  cm K] [(roW) -1 cm 2 K] 

Polyethylene (PE1) 0.81 0.32 282 1.95 5,5 
Polyethylene (PE4) 0.43 0.32 113 4.9 5.5 
Polyoxymethylene 0.71 0.38 282 1.27 3.6 
Polypropylene 0.57 0.38 170 5.0 8.5 
Nylon-66 0.42 0.38 145 7.5 10.8 
Poly(ethylene terephthalate) 0.39 0.375 141 8.7 12.2 
Polychlorotrifluoroethylene 0.34 0.38 282 3.2 9.1 

above 30K there are two physically plausible mechanisms, 
namely, thermal boundary resistance at amorphous- 
crystalline interfaces and phonon scattering arising from 
correlation in sound velocity fluctuation, which can explain 
the behaviour at lower temperatures. Although the existence 
of thermal boundary resistance R b between two materials of 
different elastic properties is well established, and similar 
low-temperature behaviour in two-phase composites has been 
quantitatively accounted for on the basis of a model incor- 
porating boundary resistance, the extension of this analysis 
to semicrystalline polymers is not straightforward since Rb 
is not directly measurable and has to be estimated from 
theory or treated as an adjustable parameter. The models 
which consider correlation in sound velocity fluctuation are 
beset by similar problems since they also involve either ar- 
bitrary parameters (such as A2, A2, as ) or crude assump- 
tions. However, it seems fair to say that we can now under- 
stand at least semiquantitatively why, at sufficiently low 
temperatures, the thermal conductivity of a semicrystaltine 
polymer is always lower than that of its amorphous 
counterpart. 

EFFECT OF ORIENTATION 

Amorphous polymers 
When an amorphous polymer is uniaxially drawn the 

chain molecules will tend to align along the draw direction. 
Since the covalent bonds along the chains are much stronger 
than the interchain van der Waals forces we would expect 
the thermal conductivity along the draw direction (Ke) to 
be higher than that in the perpendicular direction (Ka). 
This anisotropy has been investigated 29-a2 for a number of 
polymers at room temperature and for PMMA between 90 
and 300K, the results of which are summarized in Figure 20. 
Since these data have already been discussed in detail in 
previous reviews 1 we will concentrate only on those aspects 
which have bearing on our future discussion on semicrystal- 
line polymers. 

Figure 20 shows that the anisotropy of the thermal con- 
ductivity of oriented amorphous polymers in the range of 
draw ratio (1 to 5) studied is rather small for PS and PMMA 
but somewhat larger for PVC. This may be related to the 
fact that PVC normally contains a small fraction (-~ 10%) of 
crystalline regions 8'66 which provide very little thermal resis- 
tance along the draw direction once the chains are aligned. 

Two models have been proposed to explain the effect of 
orientation. In the first model 3~ an unoriented polymer is re- 
garded as a random aggregate of axially symmetric units 
whose thermal conductivities were those of the fully oriented 
materials. When the polymer is drawn the units of the aggre- 
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Figure 20 Thermal conductivity of amorphous polymers as a func- 
tion of draw ratio. -- -- --, Data at 100K. All other data are at room 
temperature. (Data from ref 1 ). A, PVC; B, PMMA; C, PMMA 
(100K); D, PS; E, PS; F, PMMA (100K); G, PMMA; H, PVC; I, PC 

gate would be aligned with the units themselves remaining 
unchanged. The thermal conductivities of the partially 
oriented polymer can be obtained either by using the series 
or the parallel model. The series model assumes uniform heat 
flux throughout the aggregate, which implies a summation of 
thermal resistivities, while the parallel model assumes uniform 
temperature gradient thus leading to a summation of thermal 
conductivities. Using the series model the thermal conducti- 
vities are given by31: 
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Thermal conductivity of extruded PE. The starting 
material is Rigidex 50 (X = 0.8).  K#: A, h = 20: B, h = 13; C, h = 9, 
D, h = 5,4; E, isotropic sample; F, K± (~ = 5.4).  K± for other samples 
of ~, > 5.4 fol low the same curve as F. Data from ref 34 

- - = -  + - - -  - (cos20) (18a) 
Kj. 2 r l "  K~" 

KI u K±U K±U 

where KI u and K± u are the thermal conductivities of the basic 
unit along and perpendicular to the symmetry axis, 0 is the 
angle between the symmetry axis and the draw direction and 
(cos20) is the average of cos20 for the aggregate. Since 
(cos20) is equal to 1/3 for the isotropic state it follows from 
equation (18) that: 

3 2 1 
- = - -  + - -  (19a) 
K K± Kt 

2 1 
+ - (19b) 

g~ u Ks u 

where K is the thermal conductivity of the isotropic material. 
With the aid of the pseudo.affine deformation scheme 3t'67 

(cos20) was calculated as a function of draw ratio X and 

equation (18) was found al to be in good agreement with the 
data for PVC. Since equation (19a) is independent of defor- 
mation scheme it in fact provides a better test for the model, 
and we are gratified to see that good agreement with data 
has indeed been obtained 3° for PVC, PMMA and PS. We 
note, however, that despite the success of the series model 
there is no a priori reason why the parallel model cannot be 
used. In general, one can only expect the two models to 
provide bounds for the actual values of the thermal 
conductivity 67,6s. 

Hansen and Ho 69 have also developed a model of the 
thermal conductivity of polymers which can account for the 
orientation effect. In analogy with the treatment employed 
for liquids a chain segment of a polymer is assumed to inter- 
act with its nearest neighbours at some frequency. Owing to 
the difference in magnitude of the intrachain and interchain 
forces the frequency of interaction for neighbours in the 
same chain is different from that for neighbours in different 
chains. With the further assumption that the energy trans- 
ferred in each interaction is proportional to the energy dif- 
ference between the interacting segments, they obtained the 
following expression: 

_ _ i  

Kl 
(20) 

Although equations (19a) and (20) are very different in form 
it has been shown t that they do not predict very different 
numerical results within the bounds where experimental 
data are available. 

Semicrystalline polymers 
We have seen that the orientation effect on amorphous 

polymers is not very strong, which is at least partly due to 
the relatively low draw ratio attainable. However, the pic- 
ture changes considerably for the semicrystalline polymers, 
the structure of which leads to very spectacular changes in 
both the magnitude and temperature dependence of the 
thermal conductivity for the highly oriented samples, as 
could be readily seen in Figures 21 and 22. 

Before any attempt at an explanation of these results it is 
important to have an understanding of the morphological 
structure of these oriented polymers. It is now generally 
accepted 7°'7t that when a semicrystaUine polymer is drawn 
the spherulite is deformed and gradually broken up. Even 
at draw ratio as low as 4, wide-angle X-ray diffraction indi- 
cates quite a high degree of crystallite orientation with the 
chain axes aligned in the draw direction whereas low-angle 
X-ray diffraction gives either a four-point pattern or an arc 
with maximum intensity on the meridian. These results are 
consistent with a roof-top structure in which the lamellae 
are tilted at some angle to the draw direction while the chains 
in the lamellae are aligned in the draw direction. As the 
polymer is further deformed the tie molecules between the 
lamellae become highly extended and blocks of crystals are 
then pulled out. Finally, at a draw ratio of about 8, these 
blocks, which are still attached to each other by the tie 
molecules, become aligned along the draw axis giving rise to 
a fibrillar structure, and further drawing will only increase 
the number of taut tie molecules with the structure itself re- 
maining unaltered. The above description is based largely 
on studies of PE but the main features are expected to be 
similar for other polymers ~'Ta. The structure of hydrostati- 
cally extruded polymers is not well understood, but presu- 
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Figure 22 Thermal conductivity of PE at 100K as a function of 
extrusion ratio: • K#; O, K.L. Data from ref 34 

mably i t  is quali tat ively similar to that o f  the drawn samples. 
To continue our discussion o f  the thermal conduct ivi ty 

we see from Figure 21 that below 10K KII ~- Kiso TM 1.5 K.L, 
that is, the anisotropy is very small. If  we remember that 
this is the temperature range where the strong scattering 
mechanism arising either from thermal boundary resistance 
or correlation in sound velocity fluctuation is operative then 
the small anisotropy can probably be attributed to the rela- 
tive insensitivity of  this process to orientation. 

Modified Maxwell model The range above 30K is much 
more interesting since the thermal conductivity is strongly 
dependent on orientation. If  we consider first the case of  
low draw ratios (say X < 5) where the influence of the tie 
molecules is negligible then the only effect of  drawing is to 
pull the chain axes of  the crystallites towards the draw direc- 
tion, this being characterized by the crystalline orientation 
function fc given by: 

.fc = ½[ 3(cos20)-  1] O~<f c ~< 1 (21) 

where 0 is the angle between the chain axis and the draw 
direction and ( ) denotes the average over all crystallites. 
Wide-angle X-ray diffraction rfieasurements 74-76 have shown 
that fc for a number of  polymers of  widely different crystal- 
linity (e.g. PVC, high and low density PE) have similar ?,- 
dependence, that is, fc increases very fast at low ~. and 
reaches about 0.9 at ;k ~- 4. On the other hand, the amor- 
phous orientation is rather low, with fa less than 0.3 for ;k 
< 577'7a. Therefore, if we take into consideration this result 
and the small orientation effect on amorphous polymers dis- 
cussed previously it seems reasonable to describe the amor- 
phous region by an isotropic conductivity K a. Then using 
the modified Maxwell model the thermal conductivities Kil 
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and/(1 can be calculated to be62: 

K -G 

K± + 2Ka 

[k.L--1 I+(COS20) kll - 1  1 ] 
= X  - - x  + - - x  (sin20) 

k± + 2 2 kll + 2 

[ ,, cos20, ] ,  
X [lcl-+--  2 2 ~" (sin20) (22a) 

gll - g a 
KIL + 2K a 

= x [ k i ~ -  1 

ku + 2 
(sin20) + kn - 1 ] x (cos20) x 

kll + 2 J 
k'-I ] 
- -  x (sin20) + (cos20) (22b) 
ku + 2 

where we have assumed that kll = KcJK a >> 1. Since (cos20) 
and (sin20) can be calculated from.fc, and k± has already been 
determined from the data on isotropic materials (see Figure 
13) there are no adjustable parameters in equation (22). 

The predicted behaviour for PE and PP as a function of 
fc is shown in Figures 23 and 24. It is clear that the model is 
in fair agreement with data and certainly gives the correct 
trends, namely: Kii increases rapidly with fc while K± shows 
only a slight decrease. The observed KII values for PE show 
a sudden sharp rise at X ~ 4(fc >~ 0.9), which indicates that 
effects other than crystalline orientation becomes important.  
This can be attributed to the increasing influence of  the tie 
molecules and a different model has to be used in this range of 
high draw ratio. Since the fie molecules merely provide 
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Figure 23 The thermal conductivity of oriented PE at 323K against 
the crystalline orientation function f~ Data from ref 33. The hori- 
zontal error bar is due to the uncertainty in fc since the measure 
ments of the orientation function and thermal conductivity were 
made on different sets of samples. The theoretical curves/('l ( ) 
and K j_ ( -  -- -- ) are calculated from equation (22) 
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Figure 24 The thermal conductivity of extruded PP at IOOK against 
the crystalline orientation function fc. K#(@) and / (1  (O) data from 
ref 8. The theoretical curves for K# ( ) and K± ( -  - - )  are cal- 
culated according to equation (22).  X = 0 .79 for the sample at h = 
10.5 while X ~ 0 .62 for the rest, so two sets of theoretical curves are 
given. A,  X = 0.79; B, X = 0.62;  C, X = 0.62;  D, X = 0.79 

paths of low thermal resistance between crystallites along 
the draw direction their effect on K± should be much smaller. 
This is consistent with the data in Figure 23 which show that 
the present model gives a good descripton of K± even up to 
k = 10. In addition, Figure 24 shows that both Ktt and K± 
for PP are not much affected by tie molecules even at k = 
10.5 and we can offer no explanation for this discrepancy at 
the moment. 

For PE, the anisotropy A = K///Kj. has also been measured 
as a function o fk  for two samples of vastly different crystal- 
linities (X = 0.45 and 0.74), the result clearly demonstrating 
the interplay between crystallinity and orientation (Figure 
25). The most important feature, namely that the anisotropy 
A at any .fc is larger for higher crystallinity, is adequately 
reproduced by the model and quantitative agreement is satis- 
factory for k ~ 4. 

Since the above model is so successful in accounting for 
the k-dependence at any temperature we expect it to.be 
equally successful in predicting the temperature dependence 
of K, Kit and K±. The temperature dependence of K of PE 
has already been discussed so we will now consider Kit and 
K±. 

It follows from equation (22b) that when fc = l(perfect 
orientation) KII = Ka(1 + 2X)/(1 - X), i.e. Kit is proportional 
to K a and thus increases monotonically with temperature. 
However, we have seen that the thermal conductivity for iso- 
tropic PE (re = 0) decreases with rising temperature between 

100 and 300K, so the model predicts that, asfc increases 
from 0 to 1, the slope of the curve of Ku versus temperature 
will change gradually from negative to positive. Unfortunate- 
ly, there are no data in this temperature range for checking 
this prediction. Nevertheless, the predicted monotonic in- 
crease of gll with temperature is consistent with the data of 
extruded PE between 30 and 100K (see Figures 16 and 21). 
The predicted temperature dependence of K± is vastly dif- 
ferent since equation (22a) implies that even at fc = 1 Ki  
depends on both K a and Kc±. If we follow the same argu- 
ment used for isotropic PE we see that K± will have similar 
temperature dependence as K, again in agreement with the 
data in Figures 16 and 21. 

Takayanagi model We have seen that KII of PE above k = 
5 is strongly influenced by the presence of tie molecules. To 
find out more about this effect let us consider the series of 
extruded samples of high density PE (Rigidex 50, X ~ 0.8) 
which goes up to extrusion ratio as high at 25 (Figures 2l 
and 22). It is clearly seen that, above 30K, KII continues to 
increase with X, up to the highest k available. Similar increase 
in the axial Young's modulus Ett has also been found 34 and 
both these features can be explained by a series arrangement 
of amorphous and crystalline regions with intercrystalline 
bridges (taut tie molecules) connecting the crystallites ~. 
The chains in the crystallites and the tie molecules are assum- 
ed to be aligned in the extrusion direction, which should be 
valid when k > 5. Then the increase in Ktt and Ell can be 
understood in terms of the increasing number of intercrystal- 
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Figure 25 The anisotropy in the thermal conductivity of drawn PE 
at room temperature against the crystalline orientation function. 
• , data (X = 0.74); v ,  data (X = 0.45) from ref 35. The theoretical 
curves are calculated according to equation (221. A, X = 0.74; 
B, X = 0.45 
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Figure 26 Schematic model of extruded PE showing the inter- 
crystalline fraction, & containing the intercrystalline bridges b 

line bridges with increasing ~,. This kind of  model has often 
been used in the analysis of  the mechanical properties of 
oriented polymers (known in the mechanical case as the 
Takayanagi model 79) and our modified version is shown 
schematically in Figure 26. If we assume that the inter- 
crystalline bridges have the same thermal conductivity and 
modulus as the crystallites, then we can obtain the follow- 
ing expressions for KII and Ell: 

1 l - a  
- + (23)  

K, Kcll bKc, + (1 - b )K a 

1 1 ~ 
- + 

Ell Ecil bEc, + (1 - b )E a 
(24) 

where the subscripts a and c refer to the amorphous and 
crystalline phases, respectively. 

In the temperature range above 30K bKc, >> (1 - b)Ka if 
b is not too small (say >0.02),  so equation (23) reduces to: 

KII 
b [b(1 - a) + a] -1 (25) 

Kc, 

Similarly, in the plateau region of modulus (~200K),  bEcl I >> 
(1 - b)E a and an equivalent expression for Ell can also be ob- 
tained. Combining these two expressions gives: 

Ktl(T) ~ E,(200K) 
- -  (26)  

Kcll (T) k~, II 

Since K,(T)/EII (200K) is known experimentally (Figure 2 7) 
and as Ec, -~ 240 GN/m 2 so,81, equation (26) can be used to 
obtain an estimate ofKcll(T ). The result at 100K is 310 
mW/cm K, which is about 200 times the value of Ka and this 
justifies the assumption of Kc, >> Ka employed in earlier 
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analysis. We note that in terms of the model the amorphous 
fraction is given by 1 - X = a(1 - b), which, together with 
equation (25), give the values of  a and b. It was found a4 that 
b increases from 0.02 to 0.09 as ;~ increases from 5.4 to 25 
while ~ remains almost unchanged at 0.25. This small value 
for b at ~ = 5.4 justifies the neglect of  the effect of  tie mole- 
cules in our previous analysis of  samples of  lower draw ratio. 
We further note that the approximations used to obtain 
equation (25) and the equivalent expression for Ell are fairly 
well justified since they would lead to at most 25% error in 
the worst case, i.e. the sample with the lowest extrusion ratio. 
The fact that there is little deviation from linearity in Figure 
27 could be due to the respective errors in the approxima- 
tions which led to equation (26) cancelling out. 

The data of  Kii also give us some information on the tem- 
perature dependence o f g c l  I. It follows from equation (25) 
that Kctl is proportional to K, which varies roughly linearly 
with temperature between 50 and 100K (Figure 21). If  the 
above analysis is repeated for this temperature range then 
the Kcll values (which varies from 150 to 310 mW/cm K) 
obtained can be substituted into equation (2) to give a rough 
estimate of  the phonon mean free path along the chain direc- 
tion of the crystallites. However, in this one-dimensional 
situation, the factor 1/3 should be replaced by 1 since this 
factor is actually the average of the square of  the cosine of 
the angle between the mean free path and the transport 
direction. Moreover, the heat capacity term C(T) should 
include only the contribution of the acoustical vibrations 
along the chains while the sound velocity v is an appropriate 
average of the longitudinal and transverse velocities of these 
vibrations. Fortunately, in the temperature range under 
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Figure 27 Variation of thermal conductivity along the extrusion 
direction at 100K with the Young's modulus in that direction 
measured at 200K 
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consideration, the observed heat capacity is contributed 
mostly by the acoustical vibrations along the chains s4 and 
can thus be used in our calculation. The longitudinal velo- 
city is estimated from v L = (Ecll/Pc) V2 ~- 15.5 x 105 cm/sec 
where Pc = 1 is the density of the crystallites. In addition, 
if we assume that the average force constant responsible for 
the transverse vibrations (C-C bending and twisting) is 
about 10 times smaller than that for the longitudinal vibra- 
tions (C-C stretching and bending) then v T ~- (10)-V2VL -~ 
4.9 x l05 cm/sec. Now if the average sound velocity is set 
roughly as v = 3(1/v L + 2/VT) - 1  ~- 6.3 x 105 cm/sec we ob- 
tain lcll = Kcll/Cv ~ constant ~ 75 A throughout the whole 
temperature range, which correlates roughly with (but is 
slightly smaller than) the dimension of the crystalline blocks 
in the extrusion direction 11. Therefore we have to conclude 
that although tie molecules do provide paths of high thermal 
conductance along the extrusion direction there must also be 
severe phonon scattering at the junctions of crystalline blocks 
and tie molecules which gives rise to a temperature-independent 
effective mean free path. Considering the crudeness of the 
Takayanagi model and the limited temperature range over 
which data are available it seems rather premature to specu- 
late on the physical reason for this behaviour. It is hoped 
that more data will be forthcoming so that we can find out 
whether such behaviour is observed over a wide temperature 
range. 

Now if we consider the heat conduction perpendicular to 
the extrusion direction the situation is quite different. The 
above model gives: 

Kl = Kc±(1 - ~) + 
b/Kcj. + (1 - b ) / r  a 

"~ (1 - ; ) r c ± +  aK a (27) 

so that K± is roughly independent of k, which is indeed the 
behaviour observed ~ (Figure 22).  Taking K a = 1.8 mW/cm K, 
we obtain Kcj. -~ 6 mW]cm K, in agreement with the value 
obtained previously from the modified Maxwell model 
(Figure 13). We have already seen that Kci  has a different 
temperature dependence, varying roughly as T-] .  The mean 
free path in this direction is smaller than lcu and is limited 
by Umklapp processes in our temperature range. 

Aggregate model. The aggregate model, which is essen- 
tially a one-phase model, has also been applied to analyse the 
anisotropy of PE at room temperature as. It was emphasized 
that neighbouring crystalline lamellae have a definite orien- 
tation correlation and they form clusters within which the 
amorphous and crystalline regions are strongly coupled. 
These clusters can then be taken as the basic units of the 
aggregate and equations (18a) and (18b) can be combined 
to give: 

,[ ] A = -  - 1 (28 )  
2 IAU - ( ~ C 1 3  <cos20> 

where A u u u = K U/K± is the anisotropy of the basic unit. If  we 
assume that the orientation of these units is adequately des- 
cribed by the crystalline orientation function fc ,  then A can 
be calculated in terms of the adjustable parameter A u 
Figure 28  shows the results for three samples of PE of dif- 
ferent crystallinity and we can see that there is good agree- 
ment between theory and experiment. We note that the re- 
suiting value of the intrinsic anisotropy A u varies from 7 for 
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Figure 28 Variation of the anisotropy of PE with draw ratio. 
• , X = 0.74; &, X = 0.67; o, X = 0.45. The theoretical curves are 
calculated according to equation (28) using A u =  26, 16, 7, respec- 
tively, for the samples with X = 0.74, 0.67 and 0.45 (from ref 35) 

the sample at X = 0.45 to 26 at X = 0.74, i.e. A u is 
crystallinity-dependent. 

The application of the aggregate model to the analysis of 
the moduli of semicrystalline polymers have received much 
greater attention a2'83 and the limitations of this model, which 
have been discussed in detail, apply equally to our case. In 
the following, we will give the main arguments and our own 
thoughts along the same lines. First, the assumption of un- 
altered basic units implies that there are no changes during 
the orientation process and this is certainly not true for 
crystalline polymers. Secondly, one would only expect the 
parallel and the series models to give the upper and lower 
bounds for the thermal conductivity of the aggregates, the 
correct value lying between these extremes. Therefore it is 
hard to justify the use of equation (28) (which is derived 
from the series model) to obtain a quantitative fit. Thirdly, 
since the orientation in the crystalline and amorphous regions 
differ by such a large extent (e.g. fc ~- 0.9 and fa < 0.3 for 
PE at X = 4) it is rather uncertain whether one should use fc 
or an appropriate average offc and fa to describe the orien- 
tation of the units. However, since equation (28) is able to 
predict the correct trend it seems that there is a definite cor- 
relation v~ith fc.  Finally, in view of the large difference bet- 
ween Kcu and Ks, a two-phase model seems more appropriate 
and we have already shown that these data can be adequately 
described by the modified Maxwell model. 

CONCLUSIONS 

We have seen that, at low temperature, orientation has little 
effect on the thermal conductivity of semicrystalline poly- 
mers and this could probably be due to the relative insensi- 
tivity of the dominant phonon scattering mechanism (whether 
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arising from the correlation in the spatial fluctuation in sound 
velocity or acoustic mismatch at amorphous-crystalline inter- 
faces) to orientation. In contrast, the thermal conductivity 
above 30K exhibits much larger anisotropy. At low draw 
ratio, this anisotropy is well described by the modified 
Maxwell model which takes into account the orientation of 
the chains in the crystallites. Since the chains are already 
aligned at ?~ = 5 further increase in K~ with k can only be ex- 
plained in terms of the increasing number of tie molecules, 
and the application of the Takayanagi model has put this 
analysis on a more quantitative basis. The aggregate model 
also seems to give encouraging results but we have seen that 
there are a few limitations. More work should be done to 
determine the conditions for the applicability of this model. 

It is unfortunate that investigations of the thermal con- 
ductivity have been confined mainly to polyethylene and 
only within limited draw ratio and temperature ranges 
(either at room temperature or below 100K), so that some 
aspects of these models have not been adequately tested. 
For example, we have mentioned that the modified Maxwell 
model predicts a change of temperature dependence of Kit 
of polyethylene with orientation and this can easily be 
checked by measurements on samples with k between 1 and 
5. Moreover, measurements on highly drawn or extruded 
polyethylene should be extended to room temperature since 
it may be of considerable technological importance to check 
our expectation that Ktl and the anisotropy A could reach 
180 mW/cm K and 60, respectively. This Ktt value is close to 
the thermal conductivity of stainless steel and is thus excep- 
tionally high for polymers. Finally, data on a large variety 
of polymers in the widest possible draw ratio and tempera- 
ture ranges would be most valuable. 
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